静脉注射冬凌草甲素后的动力学参数

, <u> </u>	截距,微	克/毫升	斜率 (分 ⁻¹)	半衰期	(分)		容积 /公斤)	連率	常数(分~1)	清除率 Cl
项目 数据	A	В	а	β	t 1/2α	t _{1/2} β	Ve	Vα	k21	kto	k ₁₂	毫升/公斤/分
R_1	8.1	5.2	0,2000	0.0083	3.5	83.5	1130	2709	0.0334	0.0199	0.1050	2 2 ,5
R_2	4.2	3.0	0.2261	0,0083	3.1	83.5	2074	4731	0.0991	0.0190	0.1163	39.4
R_3	13.1	4.4	u.1 6 93	0.0088	4.1	78.4	862	2980	0.0439	0,0306	0.0986	26,4
R_4	13.7	6.8	0.1602	0.0095	4.3	72,6	752	1979	0.0593	0.0253	0.0846	18,9
平均值	10	4.9	0.1900	0.0087	3.8	79	1200	3100	0.073	0.024	0:01	27,0
标准差	4	1.6	0.0300	6: 000 6	0.6	5	606	1167	0.023	0,005	0.013	9.0

参考文献

(1) G.J.Schmidt, Biochemistry Seminar Liquid Chromatography Section, Modern Liquid Chromatography, Jan 1980

(2) 日本ウオタズリミテツドセツブバック C₁₈ カトリツジ生体试料の简单な前处理法。

(收稿日期: 1983年8月20日)

The Determination of Rubescensin A in Blood by HPLC Sun Ding-Yi, Han Zheng-tao & Chen Xin-min, The Henrn Institute of Chemistry, Zhengzhou

Rubescensin A in blood has been developed by reversed phase high performance liquid chromatography using a ALC/GPC-244 apparatus (Water Associates). The separation was made on a column (300×3.9mml.D.) packed with Bondapak C18 bonded silica gel using methanol-water as mobile phase. The method involved initial sample concentration with SEP-PAK C18 Cartridge. The average percent recovery of Rubescensin A in blood was 88% and the fraction was detected by UV at 254 nm. Minimum detectable amount of the method is 80ng. By use of this method to study kinetics of Rubescensin A in body better results has been obtained.

双甲脒及其代谢产物的高效液相色谱分析

殷伯海 马 凤

(西北大学化学系)

双甲脒是一种高效、低毒的新型有机氮杀虫杀螨剂,通用名为Amitraz,化学名称为1,5-双(2,4-二甲基)-3-甲基-1,3,5-三氮杂戊二烯-1,4。其潮湿化合物长期贮存或在某些溶剂中发生分解;在动物体内也会出现代谢作用,生成下列产物;

由于双甲脒合成路线和原料的来源不同,导致产品组分产生差异,这给分析带来一定的困难。为了解决这一问题,我们(二)曾用薄层层析法成功地对上述五组分进行了分离,并测定了双甲脒及其代谢产物在大自

鼠体内含量的分布情况,其方 法简便、快速,效果良好,但不能定量测定。有些作者(2-3)采用气相色谱法分析了双甲脒的含量。就高效液相色谱而论,仅见F. E. Rickett(4)报导了分离双甲脒在生物组织中三种代谢产物的情况。本实验采用国产液相色谱仪,通过选择洗脱剂及其流速等条件实验,探讨了双甲脒及其分解或代谢产物的高效液相色谱行为,找到了分离此五组分的最佳条件,并对双甲脒合成产品进行了定量测定。

实验部分

仪器和武剂: SY-01型 液相色谱仪, 北京分析仪器厂。紫外吸收检定器, UV-251nm; 微量注射器: 5或10微升; 色谱柱: 不锈钢制, 柱长10厘米, 内径5毫米。

固定相: YWG-C₁₈H₃₇,10μm, 天津试剂二厂;采用四川分析仪器厂生产的ZTJ—1型液相色谱装填机,以四氯化碳:二氧六环(2:1,体积/体积)为溶剂进行匀浆法装柱,压力为350—400公斤/厘米²。

洗脱剂, 乙腈、甲醇和乙醇等均为分析

纯, 水川二次蒸馏水。

双甲脒样品及各种纯品均由西北大学农 药组提供。

结果及讨论

(一) 色谱柱效能的测定

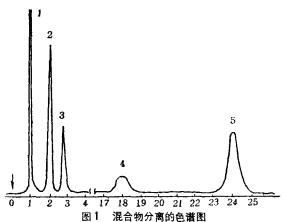
为了检验自装柱的性能,我们以乙腈一水(6:4,体积/体积)为洗脱剂,进样量1微克,分别测定了不同流速下的理论塔板数普遍较高,最高可达2737块/10厘米。当流速为1.0毫升/分时,2,4一二甲基苯胺和2,4一二甲基甲酰苯胺的理论塔板数也较高,分别为2945块/10厘米、1617块/10厘米,4-氨基-3-甲基苯甲酸的保留时间短,其理论塔板数仅为416块/10厘米,但峰形好,而单甲脒的峰形较宽且不对称,理论塔板数为621块/10厘米。由上可见此自装柱的柱效能可满足实验的要求。

(二) 洗脱剂的选择

洗脱剂的选择是本实验分离效果好坏的 关键,我们选用两种洗脱剂体系和四种配比 对五个组分分别进行了色谱分析,所测数据 见表1。

表 1 不同洗脱剂配比时各组分的保留值 (乙腈一水体系:流速1.5毫升/分;甲醇一水体系:流速1.0毫升/分;进样:1微克)

配比(V/V	5:5		6:4		7:3		8:2	
体系 样品	乙腈-水	甲醇-水	乙腈-水	甲醇-水	乙腈-水	甲醇-水	乙腈-水	甲醇-水
4-氨基-3-甲基苯甲酸	47"	4' 42"	39"	1' 27"	40"	1' \$5"	36"	1' 15"
2,4 -二甲基甲酰苯胺	2' 49"	21' 57"	1' 28"	4' 15"	1' 20"	2' 33"	1'0"	1' 54"
2,4-二甲基苯胺	3' 54"	**	1'53"	5'7"	1'38"	3' 5"	1'7"	2' 19"
单甲脒	10'0"	23' 3"	15' 43"	4' 19"	*19'0"	*6' 40"	**	*7' 20"
双甲脒	*15' 32"	**	16' 0"	* 17' 0"	7' 31"	20' 40"	2' 31"	12' 1"


*---表示峰形平扁; **---表示60分钟未出峰。

由表中数据可看出。在两种洗脱剂体系中,以乙腈一水(6:4,体积/体积)进行洗脱时,双甲脒等五个组分峰形较好,其中4-氨基-3-甲基苯甲酸、2,4-二甲基甲酰苯胺和 2,4-二甲基苯胺的保留时间虽短,但峰形窄且清晰,并有一定的差值,分离比较理想。当改变乙腈一水体系的 配比 时,随 乙

腈的增加,水减少,则组分保留值变小。如双甲脒就是随洗脱剂极性的减小,保留值越来越小,峰形越窄,效果变好。唯独单甲脒不规则,随洗脱剂极性的减小,其保留值反而越来越大,峰形越来越扁平,当体积比为8:2时,在60分钟内未出峰;这可能是单甲脒本身、固定相和洗脱剂三者相互制约之

故, 其主要影响因素和机制有待 进 一 步 探 讨。

因此,以乙腈一水 (8:2,体积/体积) 为洗脱剂时,可用峰高法定量测定双甲脒; 就分离双甲脒及其它组分而论,则以 6:4 的 配比,流速1.0毫升/分为最佳洗脱条件,结 果见图1。

柱: 100毫米×5毫米 (内径); 固定相: YWG-

C18H87 10微克;

洗脱剂: 乙腈一水, 6:4(体/体), 流速; 1.0毫升/分:

进样量: 各0.4微克 检测器: UV—254nm;记录纸速300毫米/小时,室温 峰: 1.4-氨基-3-甲基苯甲酸, 2.2,4-二甲基甲酰苯 胺; 3.2,4-二甲基苯胺, 4.单甲脒, 5.双甲脒。

用甲醇--水作洗脱剂时, 其配比以 6:4最好,虽可以分离四个组分,但结果不 理想。

(三) 双甲脒的定量测定

定量分析双甲脒时, 官选择乙腈一水, (8:2, 体积/体积) 为洗脱剂, 因为双甲脒 在此条件下出峰快,峰形好,其他组分又不 干扰测定, 可用峰高法进行定量。

1. 求校正因子 K值, 本实验以查尔酮

双甲脒样品测定的结果 表3

编号	W双	₩ //J	h <u>权</u>	双甲脒
	(g)	(g)	h内	(%)
1	0,1589	0.0400	1.119	85,66
2	0,1819	0.0400	1.161	77,64
3	0,2301	0.0400	1.110	58,68
4	0,2639	0.0400	1.180	54-39

准确称取双甲脒纯样0.1000, 0.1500和 0.2000克,分别用乙腈溶解,然后转入100 毫升容量瓶中,各加入5毫升内标剂的乙 腈溶液(8毫克/毫升),用乙腈冲至刻 度,摇勾。每次进样1微升,用乙腈一水 (8:2,积体/体积) 洗脱,流速1.0毫升/分, 重复三次,记录色谱图。标准曲线的线性关

系良好,依公式: $\frac{W_{XX}}{W_{DA}} = K \cdot \frac{h_{XX}}{h_{DA}}$, 测得的校 正因子 K 值列于表 2 中。

校正因子K的测定值 表 2

编号	W双 (g)	W内 (g)	W双 W内	<u>h双</u> h内	K但	K平均
1	0,1000	0,04 0 0	2,500	0.8335 0.8350 0.8665		
2	0 1500	0,0400	3.750	1,122 1,161 1,123	3.342 3.230 3.339	3.258
3	0.2000	0.0400	5,000	1.482 1.407 1.424		

2. 样品的测定, 准确称取一定量的双 甲脒样品,在与上述相同的色谱条件下,测量 和应的峰高比, 借校正因子 K计算其含量。

双甲脒% =
$$\frac{K \cdot \frac{h \times w}{h + h} \cdot W}{W \neq 1} \times 100\%$$

测得结果见表3。为验证本法的可靠性,将 编号1,2样品用气相色谱法进 行 分 析,结果 分别 为 86.61%和78.20%。从此比较结果可 知,本法对工业合成双甲脒产品进行检测是 可行的,并有良好的重现性(表4)。

样品分析的精密度 表 4

次数	测定值平均值(%)(%)	偏差	(偏差)2	标准 偏差 (%)	变异 系数 (%)
1 2 3 4 5	91.45 91.94 91.94 91.76 91.53 91.94	0.31 0.18 0.18 0.23 0.18	9.61×10 ⁻² 3.24×10 ⁻² 3.24×10 ⁻² 5.29×10 ⁻² 3.24×10 ⁻²	0.25	0,27

致谢:本文研究工作得到李铸 付 教 授、 雷 根 虎、郭治安同志和陕西省化学所的党高潮、宋纪荣 闫志的帮助,西大农药组徐振元同志提供纯品并提 出建议,在此一并表示感谢。

参考文献

- 殷伯海、樊少英、祝信绒、雷根虎、孙大琦, 农药,(5),12(1982).
- (2) 严巍, 农药, (1), 42(1985).
- (3) M.V.Machin and K. W. Mcdougall, J. Assoc-Off. Anal. Chem., 61, 1516(1978).
- (4) F.E.Rickett, J.Chromatogr., 142, 705(1977).

(收稿日期: 1984年4月10日)

High Performance Liquid Chromatographic Analysis Amitraz and Its Metabolites Vin Fo-hai & Ma Feng, Department of Chemistry, Xibei University, Vinc.

The high performance liquid chromatographic behaviour of amitraz and its decomposition products or metabolites using SY-01 liquid chromatographic instrument, YWG-C₁₈H₃₇ column with various mobile phase systems, including different ratios and flow-rates has been investigated. The results showed that acetonitrile—water(6:4,V/V) as developing solvent, flow-rate 1.0ml/min and ultraviolet detection at 254nm were the best conditions for separating the mixture. Amitraz was quantitatively determined by using acetonitrilewater (8:2,V/V) as an eluent, chalcone (1,3-diphenyl-propene-2-one-1) as an internal standard.

高效液相色谱法测定人血浆中青霉素浓度

袁倚盛 宗秀峰 陈 刚

(南京军区总医院)

青霉素类为临床治疗学开辟了一条新的途径,使很多传染病的死亡率大幅度下降。 但应用青霉素的同时也带来了许多新问题,如细菌的耐药性普遍增加,毒副反应,过量和无指征滥用,以及某些劳而无功的预防性使用青霉素等,这些都是经常碰到而又难以解决的问题。

通过测定青霉素类的血药浓度,对青霉素类的动力学参数作系统研究,针对不同病例,考察不同制剂、不同的给药方法对治疗的影响,从而调整临床用药方案,降低费用,并对某些特殊病例进行监护用药。

过去用生物法和比色法测定体内青霉素 类的浓度,前者误差大,后者易受血清和体 液中其他成份的干扰,并且两法都受到合并 用药的干扰。应用高效液相色谱法测定人血 浆中青霉素浓度尚未见报导。应用本法在临 床上测定了五种以上青霉素的血药浓度。

实验部分

(一) 仪器

色谱仪: CX-801高效液相色谱仪(南

京分析仪器厂)。进样器: 六通平面阀,附50 微升取样管 (MODEL 7105, RHEODYNE, U.S.A.)。积分仪: C—RIB(SHIMADZU, JAPAN)。

(二) 化学试剂与标准品

化学试剂均采用市售分析纯级,不经处 理。

青霉素G(3526厂), 羧苄青霉素 (BRL, ENGLAND) 氨苄青霉素 (上海第四制药厂), 邻氯青霉素 (上海第四制药厂), 苯唑青霉素 (上海第三制药厂)。

(三) 样品制备

- 1. 标准品储备液的配制: 用蒸馏水将 各种青霉素标准品配成所需要的浓度。
- 2. 标准样品的制备:分别取正常人血浆(肝素抗凝)0.5毫升,各加入相应量的青霉素标准品溶液使成一定的浓度,加1毫升0.33N高氯酸,充分振荡,以3500转/分离心10分钟,取上清液进样。
- 3. 血浆样品的制备,取注射青霉素后不同时间的病人静脉血1毫升(肝素抗凝),